Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In this poster, we review the adoption of the Early Research Scholars Program (ERSP), developed at the University of California San Diego, to our institution, the University of Illinois at Chicago (UIC). The program was designed to support retention of students from marginalized backgrounds in the field of computing especially during the second year of their major.more » « less
- 
            null (Ed.)With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts.more » « less
- 
            When users post on social media, they protect their privacy by choosing an access control setting that is rarely revisited. Changes in users' lives and relationships, as well as social media platforms themselves, can cause mismatches between a post's active privacy setting and the desired setting. The importance of managing this setting combined with the high volume of potential friend-post pairs needing evaluation necessitate a semi-automated approach. We attack this problem through a combination of a user study and the development of automated inference of potentially mismatched privacy settings. A total of 78 Facebook users reevaluated the privacy settings for five of their Facebook posts, also indicating whether a selection of friends should be able to access each post. They also explained their decision. With this user data, we designed a classifier to identify posts with currently incorrect sharing settings. This classifier shows a 317% improvement over a baseline classifier based on friend interaction. We also find that many of the most useful features can be collected without user intervention, and we identify directions for improving the classifier's accuracy.more » « less
- 
            Global Internet users increasingly rely on virtual private network (VPN) services to preserve their privacy, circumvent censorship, and access geo-filtered content. Due to their own lack of technical sophistication and the opaque nature of VPN clients, however, the vast majority of users have limited means to verify a given VPN service’s claims along any of these dimensions. We design an active measurement system to test various infrastructural and privacy aspects of VPN services and evaluate 62 commercial providers. Our results suggest that while commercial VPN services seem, on the whole, less likely to intercept or tamper with user traffic than other, previously studied forms of traffic proxying, many VPNs do leak user traffic—perhaps inadvertently—through a variety of means. We also find that a non-trivial fraction of VPN providers transparently proxy traffic, and many misrepresent the physical location of their vantage points: 5–30% of the vantage points, associated with 10% of the providers we study, appear to be hosted on servers located in countries other than those advertised to users.more » « less
- 
            Online archives, including social media and cloud storage, store vast troves of personal data accumulated over many years. Recent work suggests that users feel the need to retrospectively manage security and privacy for this huge volume of content. However, few mechanisms and systems help these users complete this daunting task. To that end, we propose the creation of usable retrospective data management mechanisms, outlining our vision for a possible architecture to address this challenge.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available